Distinct mechanosensitive properties of capsaicin-sensitive and -insensitive sensory neurons.
نویسندگان
چکیده
Mechanical stimulation of the somata of cultured neonatal rat dorsal root ganglia (DRG) neurons evoked inward cationic currents that displayed distinct properties between different subsets of cells. The presumptive nociceptor population, defined by capsaicin sensitivity, showed higher thresholds for the induction of an inward current and lower peak currents than other mechanosensitive neurons. A subset of capsaicin-sensitive IB4-positive sensory neurons was refractory to mechanical stimulation. All mechanically activated currents were blocked by gadolinium (IC50 approximately 8 microm) and ruthenium red (IC50 approximately 3 microm). Disruption of the actin cytoskeleton by acute application of 10 microm cytochalasin B inhibited currents much more effectively in capsaicin-insensitive (61%) than capsaicin-sensitive neurons (20%). Extracellular calcium also attenuated mechanosensitive currents and to a greater degree in capsaicin-insensitive neurons than capsaicin-sensitive neurons. These data demonstrate that the somata of different types of cultured sensory neurons have distinct mechanosensitive phenotypes that retain properties associated with nerve terminal mechanosensors in vivo.
منابع مشابه
Chemical and cold sensitivity of two distinct populations of TRPM8-expressing somatosensory neurons.
The cold- and menthol-sensing TRPM8 receptor has been proposed to have both nonnociceptive and nociceptive functions. However, one puzzle is how this single type of receptor may be used by somatosensory neurons to code for two distinct sensory modalities. Using acutely dissociated rat dorsal root ganglion (DRG) neurons without culture, we show that TRPM8 receptors are expressed on two distinct ...
متن کاملActivation of Central Terminal Vanilloid Receptor-1 Receptors and -Methylene-ATP-Sensitive P2X Receptors Reveals a Converged Synaptic Activity onto the Deep Dorsal Horn Neurons of the Spinal Cord
Using a spinal cord slice preparation and patch-clamp recordings from spinal cord dorsal horn neurons, we examined excitatory and inhibitory circuits connecting to lamina V neurons after the activation of afferent central terminal vanilloid receptor-1 (VR1) receptors and P2X receptors. We found that single neurons in lamina V often received excitatory inputs from two chemically defined afferent...
متن کاملPhenotypic characterization of gastric sensory neurons in mice.
Recent studies suggest that the capsaicin receptor [transient receptor potential vanilloid (TRPV)1] may play a role in visceral mechanosensation. To address the potential role of TRPV1 in vagal sensory neurons, we developed a new in vitro technique allowing us to determine TRPV1 expression directly in physiologically characterized gastric sensory neurons. Stomach, esophagus, and intact vagus ne...
متن کاملTRPA1 Channels Modify TRPV1-Mediated Current Responses in Dorsal Root Ganglion Neurons
The transient receptor potential vanilloid 1 (TRPV1) channel is highly expressed in a subset of sensory neurons in the dorsal root ganglia (DRG) and trigeminal ganglia of experimental animals, responsible for nociception. Many researches have revealed that some TRPV1-positive neurons co-express the transient receptor potential ankyrin 1 (TRPA1) channel whose activities are closely modulated by ...
متن کاملCholecystokinin activates both A- and C-type vagal afferent neurons.
Patch-clamp electrophysiological methods were used on dissociated rat nodose neurons maintained in culture to determine whether responses to cholecystokinin (CCK) were associated with capsaicin-resistant (A type) or capsaicin-sensitive (C type) neurons. Nodose neurons were classified as A or C type on the basis of the characteristics of the Na+ current, a hyperpolarization-activated current, an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 22 12 شماره
صفحات -
تاریخ انتشار 2002